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Pharmacological targeting of inflammation through STAT3 and NF-kB signaling pathways is, among

other inflammatory biomarkers, associated with cyclooxygenase (COX)-2 inhibition and is believed to

play a crucial role in prevention and therapy of cancer. Recently, inflammatory factors were found to

impact on mesenchymal stromal cells (MSC) contribution to tumor angiogenesis. Given MSC

chemotaxis and cell survival are regulated, in part, by the membrane type-1 matrix metalloproteinase

(MT1-MMP), an MMP also involved in transducing NF-kB intracellular signaling pathways, we tested

whether STAT3 regulation by MT1-MMP may also contribute to the expression balance of COX-2 in

MSC. We demonstrate that STAT3 phosphorylation was triggered in MSC treated with the MT1-MMP

inducer lectin Concanavalin-A (ConA), and that this phosphorylation was abrogated by the JAK2

inhibitor AG490. MT1-MMP gene silencing significantly inhibited ConA-induced STAT3 phosphoryla-

tion and this was correlated with reduced proMMP-2 activation and COX-2 expression. On the other

hand, STAT3 gene silencing potentiated ConA-induced COX-2 expression, providing evidence for a

new MT1-MMP/JAK/STAT3 signaling axis that may, in part, explain how MT1-MMP contributes to

proinflammatory intracellular signaling. Given that MSC are avidly recruited within inflammatory

microenvironments and within experimental vascularizing tumors, these mechanistic observations

support a possible dual control of cell adaptation to inflammation by MT1-MMP and that may enable

MSC to be active participants within inflamed tissues.

& 2012 Elsevier Inc. All rights reserved.
Introduction

Cells present in the tumor microenvironment include fibroblasts,

vascular, smooth muscle, adipocytes, immune cells and mesen-

chymal stromal cells (MSC). Most commonly isolated from the

bone marrow, MSC are a population of pluripotent adult stem cells
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that can differentiate into many mesenchymal phenotypes [1,2],

allowing MSC to appear either as pro- or anti-tumorigenic [3]. In

fact, recruitment of MSC by experimental vascularizing tumours

resulted in the incorporation of MSC within the tumor architecture

[4,5] which, combined with intrinsic immunomodulatory mechan-

isms, implies that they must also respond to inflammation- and
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tumor-derived growth factor cues [6,7]. While chronic inflamma-

tion has been found to mediate a wide variety of diseases including

neoplasms [8], our understanding of the oncogenic adaptation of

MSC within an inflammatory microenvironment lacks the identi-

fication of molecular contributors and characterization of

inflammation-mediated signaling pathways. Among the gene

products involved in the induction of the inflammatory process,

cyclooxygenase (COX)-2 has been shown to have a close relation-

ship with tumorigenesis [9] and with altered extracellular matrix

(ECM) proteolysis that has been linked to matrix metalloproteinase

(MMP)-mediated events [10]. The signaling contributors that link

MMP to inflammation and that may lead to unregulated tumor

growth, angiogenesis, tissue invasion and metastasis remain poorly

documented.

While most MMP are secreted, MT1-MMP is a membrane-

associated MMP regulated by hypoxia [11] which, aside from its

well-known role in the activation of proMMP-2 and intrinsic

proteolytic activity towards ECM molecules, drives MSC mobiliza-

tion [12,13]. More importantly, phosphorylation of its cytoplasmic

domain was recently linked to crucial signal transducing functions,

and was shown to interact with several adaptor proteins including

p130Cas [14], MTCBP-1 [15], 3BP2 [16], and Src-mediated events

[17]. In light of such signaling scaffolds taking place in MT1-MMP

cellular signaling, MT1-MMP functions were further found asso-

ciated with platelet-mediated calcium mobilization [18], regula-

tion of cell death/survival bioswitch [19,20], and regulation of

proinflammatory signaling including COX-2 [21,22].

Early proinflammatory cellular signaling processes triggered

by ConA resulted in the MT1-MMP-mediated regulation of COX-2

in gliomas through an IKK/NF-kB-dependent pathway [22].

Given that JAK/STAT is also involved in COX-2 regulation, we

hypothesized that MT1-MMP may in part signal the inflamma-

tion molecular adaptation of MSC within solid tumours, and that

an inflammatory signaling balance ultimately accounts for some

of the therapy resistance phenotype. In order to specifically

induce MT1-MMP, for which the biomarker expression corre-

lated with high COX-2 levels in gliomas with increasing histolo-

gical grade [23], we used the lectin from Canavalia ensiformis

(Concanavalin-A, ConA), which is well known to provoke and

mimic the biological lectin/carbohydrate interactions that reg-

ulate ECM protein recognition.
Materials and methods

Materials

Sodium dodecylsulfate (SDS), bovine serum albumin (BSA) and

Actinonin were purchased from Sigma (Oakville, ON). Cell culture

media were obtained from Life Technologies (Burlington, ON).

Electrophoresis reagents were purchased from Bio-Rad (Missis-

sauga, ON). The enhanced chemiluminescence (ECL) reagents

were from Amersham Pharmacia Biotech (Baie d’Urf�e, QC). Micro

bicinchoninic acid protein assay reagents were from Pierce

(Rockford, IL). The PI3K inhibitor LY294002, the p38/MAPK

inhibitor SB203580, the MEK kinase inhibitor U0126 and the

JAK family tyrosine kinase inhibitor AG490 were from EMD

Millipore (Toronto, ON). The anti-ERK-1/2 (extracellular signal-

regulated kinase 1 and 2) (K-23) polyclonal antibody was from

Santa Cruz Biotechnologies (Santa Cruz, CA). Anti-STAT3 (79D7)
and anti-phospho-STAT3 (Tyr 705) polyclonal antibodies were

from Cell Signaling Technology (Beverly, MA). The polyclonal

antibody against COX-2 was from Cayman Chemical (Ann

Arbor, MI).

Cell cultures

This study was approved by the ‘‘Comit�e Institutionnel des

Risques Biologiques’’ (certificate #10-CIRB-53.3.5). Bone

marrow-derived mesenchymal stromal cells (MSC) were isolated

from the whole femur and tibia bone marrow of C57BL/6 female

mice; cells were cultured and characterized by flow cytometry as

previously described [24]. Serum starvation is classically per-

formed by culturing the cells in high glucose Dulbecco’s modified

Eagle’s medium (DMEM; GibcoBRL) and 100 units/ml Penicillin/

Streptomycin from which the 10% inactivated fetal bovine serum

(iFBS) (Hyclone Laboratories, Logan, UT) was omitted.

Total RNA isolation, cDNA synthesis and real-time
quantitative RT-PCR

Total RNA was extracted from MSC monolayers using TRIzol

reagent (Life Technologies, Gaithersburg, MD). For cDNA synthesis,

1 mg of total RNA was reverse-transcribed into cDNA using a high

capacity cDNA reverse transcription kit (Applied Biosystems, Foster

City, CA). cDNA was stored at �80 1C prior to PCR. Gene expression

was quantified by real-time quantitative PCR using iQ SYBR Green

Supermix (BIO-RAD, Hercules, CA). DNA amplification was carried

out using an Icycler iQ5 (BIO-RAD, Hercules, CA) and product

detection was performed by measuring binding of the fluorescent

dye SYBR Green I to double-stranded DNA. The following primer

sets were provided by QIAGEN (Valencia, CA): MT1-MMP

(Mm_Mmp14_1_SG QT01064308), b-Actin (Mm_Actb_2_SG

QT01136772). The relative quantities of target gene mRNA against

an internal control, b-Actin RNA, were measured by following a

DCT method employing an amplification plot (fluorescence signal

vs. cycle number). The difference (DCT) between the mean values

in the triplicate samples of target gene and those of b-Actin RNA

were calculated by iQ5 Optical System Software version 2.0 (BIO-

RAD, Hercules, CA) and the relative quantified value (RQV) was

expressed as 2�DC
T .

Transfection method and RNA interference

MSC were transiently transfected with 20 nM siRNA against

STAT3 (Mm_Stat3_1 FlexiTube siRNA, SI01435287), MT1-MMP

(Mm_Mmp14_2 HP siRNA, SI00177800), or scrambled sequences

(AllStar Negative Control siRNA, 1027281) using Lipofectamine

2000 transfection reagent (Invitrogen, CA). Small interfering RNA

and mismatch siRNA were synthesized by QIAGEN and annealed

to form duplexes.

Gelatin zymography

Gelatin zymography was used to assess the extracellular levels of

secreted proMMP-2 and MMP-2 activities. Briefly, an aliquot (20 ml)

of the culture medium was subjected to SDS-polyacrylamide gel

electrophoresis (SDS-PAGE) in a gel containing 0.1 mg/ml gelatin

(Sigma-Aldrich Canada, G2625). The gels were then incubated in

2.5% Triton X-100 (Bioshop, TRX506.500) and rinsed in nanopure
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distilled water. Gels were further incubated at 37 1C for 20 h in

20 mM NaCl, 5 mM CaCl2, 0.02% Brij-35, 50 mM Tris-HCl buffer,

pH 7.6 and then stained with 0.1% Coomassie Brilliant blue R-250

(Bioshop, CBB250) and destained in 10% acetic acid, 30% methanol

in water. Gelatinolytic activity was detected as unstained bands on

a blue background.

Immunoblotting procedures

The following electrophoresis reagents were used: Sodium dodecyl-

sulfate (SDS; Sigma-Aldrich Canada, L3771), acrylamide (Bioshop,

ACR001.1), and bis-acrylamide (Bioshop, BIS001.100). Proteins from

control and treated cells were separated by SDS-PAGE. After
Fig. 1 – Concanavalin-A triggers transient and dose-dependent ST

and treated with either 30 lg/ml Concanavalin-A for up to 24 h (

pre-treated for 30 min with 10 lM of the JAK family tyrosine kina

kinase inhibitor (U0126) or the PI3K inhibitor (LY294002), followed

Cell lysates were isolated, western blotting and immunodetection

antibodies as described in the Methods section. (B, D and F) Dens

values for pSTAT3/STAT3 ratios. A representative blot, out of 3 ind

analysis are shown. Statistical significance was assessed using Stud

considered significant and an asterisk identifies such significance
electrophoresis, proteins were electrotransferred to polyvinylidene

difluoride membranes (Millipore, IPVH00010) which were then

blocked for 1 h at room temperature with 5% non-fat dry milk in

Tris-buffered saline (150 mM NaCl, 20 mM Tris-HCl, pH 7.5) con-

taining 0.3% Tween-20 (TBST; Bioshop, TWN510-500). Membranes

were further washed in TBST and incubated with the above

mentioned primary antibodies (1/1000 dilution) in TBST containing

3% bovine serum albumin and 0.1% sodium azide (Sigma-Aldrich

Canada, S2002), followed by a 1 h incubation with horseradish

peroxidase-conjugated donkey anti-rabbit (Jackson ImmunoRe-

search Laboratories, 711-035-152) or goat anti-mouse IgG (Jackson

ImmunoResearch Laboratories, 115-035-062) at 1/2500 dilutions in

TBST containing 5% non-fat dry milk. Immunoreactive material was
AT3 phosphorylation. Subconfluent MSC were serum-starved

A), with various Concanavalin-A concentrations for 2 h (C), or

se inhibitor (AG490), the p38/MAPK inhibitor (SB203580), MEK

by a 2 h treatment with 30 lg/ml Concanavalin-A. (A, C and E)

were performed with anti-phospho-STAT3 and anti-STAT3

itometric measurements were performed and represent the

ependent experiments, and corresponding densitometric

ent’s unpaired t-test. Probability values of less than 0.05 were

.
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visualized by enhanced chemiluminescence (Amersham Pharmacia

Biotech, RPN3004) [25].

Statistical data analysis

Data are representative of three or more independent experi-

ments. Statistical significance was assessed using Student’s

unpaired t-test. Probability values of less than 0.05 were con-

sidered significant and an asterisk identifies such significance in

the figures.
Results

Concanavalin-A triggers STAT3 phosphorylation. In order to first assess

whether any JAK/STAT3 signaling pathway is inducible, MSC were

serum-starved and then cultured in the presence of 30 mg/ml

Concanavalin-A (ConA) for up to 24 h. Cells were harvested and

lysates used to evaluate the extent of STAT3 phosphorylation

(Fig. 1A). We found that ConA significantly triggered STAT3 phos-

phorylation, reaching a maximal value at 2 h of treatment (Fig. 1B).

When various ConA concentrations were tested on MSC (Fig. 1C), a

dose-dependent increase in STAT3 phosphorylation was observed

which reached a plateau at 30 mg/ml (Fig. 1D). Given part of ConA

cell surface action involves membrane bound biomarker proteases

including transmembrane protease aminopeptidase N (APN)/CD13

[26] as well as MT1-MMP [20], we tested whether Actinonin, which

was reported to target both biomarkers catalytic functions [27–29],

reversed ConA signaling. Interestingly, treatment with Actinonin was

unable to reverse ConA-induced STAT3 phosphorylation, suggesting

that induction of the JAK/STAT pathway requires alternate specific

intracellular cell surface-mediated signaling (Fig. 1C).

STAT3 phosphorylation by Concanavalin-A is controlled
through JAK and MAPK signaling pathways

We next moved on to delineate the potential signaling pathways

and kinases involved in ConA-mediated STAT3 phosphorylation.

MSC were serum-starved, pre-treated for 30 min with the JAK

family tyrosine kinase inhibitor (AG490), the p38/MAPK inhibitor

(SB203580), MEK kinase inhibitor (U0126) or the PI3K inhibitor

(LY294002) and were then stimulated with ConA for 2 h. STAT3

phosphorylation (Fig. 1E) was significantly diminished by AG490

and U0126 (Fig. 1F). This supports that JAK and MEK transduce

ConA-mediated STAT3 phosphorylation.

MT1-MMP gene silencing abrogates Concanavalin-A-
mediated STAT3 phosphorylation, proMMP-2 activation
and COX-2 expression

Given the crucial intracellular signaling role that MT1-MMP

exerts in ConA-mediated cell surface binding, we next assessed

its possible contribution to STAT3 phosphorylation. MT1-MMP

gene silencing was first validated by qRT-PCR (Fig. 2A), and then

cells were treated with various concentrations of ConA (Fig. 2B).

While total STAT3 levels did not change, STAT3 phosphorylation

was significantly abrogated when MT1-MMP expression was

silenced (Fig. 2C). Silencing of MT1-MMP did not alter

Interleukin-6-induced STAT3 phosphorylation confirming a

specific link in ConA/MT1-MMP interaction (data not shown).
Abrogation of the MT1-MMP/STAT3 signaling axis was further

correlated to MT1-MMP-dependent proMMP-2 activation and to

ConA-induced intracellular COX-2 expression (Fig. 2D). Indeed,

functional downregulation of MT1-MMP at the cell surface was

found to efficiently inhibit proMMP-2 activation as assessed by

gelatin zymography and confirms the efficiency of MT1-MMP

silencing (Fig. 2E). Moreover, ConA-induced intracellular COX-2

expression was also inhibited when MT1-MMP expression was

silenced (Fig. 2F).

STAT3 gene silencing potentiates Concanavalin-A-induced
COX-2 expression

We next analyzed the direct impact of STAT3 on ConA-mediated

COX-2 expression and proMMP-2 activation. STAT3 gene expres-

sion was transiently silenced and MSC treated with various

concentrations of ConA (Fig. 3A). While STAT3 protein expression

was abrogated, we found that ConA-induced COX-2 expression

was significantly potentiated within cells that had low STAT3

expresion (Fig. 3B). STAT3 silencing did not affect ConA-induced

proMMP-2 activation, suggesting that MT1-MMP cell surface

expression/function was not altered (Fig. 3C).
Discussion

Recent work in understanding inflammatory signaling cascades

has identified a series of novel promising targets, notably in

pathways involving NF-kB and JAK/STAT transcription factors

[24]. Being the two most important transcription factors asso-

ciated with inflammation-mediated tumor promotion, NF-kB and

STAT3 are also aberrantly activated in glioma where they

regulate the expression of genes crucial for tumorigenesis [30].

Given the roles that MSC potentially play in brain tumour

development, and since inflammation is crucial for glioblastoma

progression, it is further believed that a subset of primary

glioblastomas, derived from transformed stem cells that possess

MSC-like properties [31], retain partial phenotypic aspects of the

MSC nature within the tumours’ hypoxic and inflammatory

environment [32]. Accordingly, exogenously delivered human

MSC were found to be recruited and to adapt within human

gliomas after intravascular delivery [5]. More recently, molecular

markers associated with MSC were found to characterize the

brain tumour-initiating cells involved in the development of

hypoxic solid tumours such as glioblastomas [32].

Clinical applications for MSC have been suggested given their

immunomodulatory functions and ability to home in and to

adapt within sites of inflammation following tissue injury [33].

However, homing of MSC to tumours is also believed to be

among the earliest phenomena in MSC-cancer interactions and

was recently reported in a mouse model where injected human

MSC preferentially migrated to implanted human tumours [4,6],

and where cotransplantation of MSC with melanoma cells

enhanced tumour engraftment and growth [11]. This suggests

that MSC are active participants in the development of solid

tumours, and that adaptive cellular conditions have significant

pathological implications towards hypoxic solid tumour devel-

opment involving a potential complex interrelationship and

crosstalk between JAK/STAT- and NF-kB-regulated expression

of COX-2 in inflammation [34]. In support, isolation of cancer



Fig. 2 – MT1-MMP gene silencing abrogates Concanavalin-A-mediated STAT3 phosphorylation, proMMP-2 activation and COX-2

expression. MSC were transiently transfected with scrambled sequences (siScr) or MT1-MMP siRNA (siMT1-MMP) as described in

the Methods section. (A) Total RNA was extracted, and qRT-PCR was used to assess MT1-MMP gene expression and confirm gene

downregulation. (B, D) Subconfluent transfected MSC were serum-starved and treated with 30 lg/ml of Concanavalin-A for 2 h

(B) or 24 h (D). Conditioned media was isolated and gelatin zymography performed as described in the Methods section to assess

the extent of proMMP-2 to MMP-2 activation. Cell lysates were isolated, western blotting and immunodetection were performed

with anti-phospho-STAT3, anti-STAT3, or anti-COX-2 antibodies as described in the Methods section. (C, E, F) Densitometric

measurements were performed and represent the values for pSTAT3/STAT3, MMP-2/proMMP-2, COX-2/STAT3 ratios respectively.

A representative blot and zymogram, out of 3 independent experiments, and corresponding densitometric analysis are shown.
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stem-like cells from the glioblastoma cell line U87MG has been

reported [21,35], and NF-kB-mediated COX-2 regulation by MT1-

MMP demonstrated [21].

Given NF-kB can affect STAT3 activity, and that STAT3 can

reciprocally contribute to NF-kB activation [36], mutual contri-

bution of NF-kB and STAT3 activation processes may therefore

provide rationale for their therapeutic targeting. Accordingly,

targeting such dual transcriptional control of one crucial angio-

genic and inflammatory biomarker, such as the blood-barrier
barrier disruptor MMP-9, may be envisioned [37]. Interestingly

in recent years, targeting strategies have explored the chemo-

preventive properties of diet-derived products including curcu-

min [38], delphinidin [39], epigallocatechin gallate (EGCG)

[40,41], and resveratrol [42] all effective in inhibiting MMP-9

expression through NF-kB and/or STAT3 activity. Therapeutic

targeting of such crosstalk signaling may therefore be reasonably

considered as an adjunct to existing chemotherapy and radiation

treatments [43]. Among the latter molecules, EGCG was also able



Fig. 3 – STAT3 gene silencing potentiates Concanavalin-A-induced COX-2 expression. MSC were transiently transfected with

scrambled sequences (siScr) or STAT3 siRNA (siSTAT3) as described in the Methods section. Subconfluent transfected MSC were

serum-starved and treated with various Concanavalin-A concentrations for 24 h. (A) Cell lysates were isolated, western blotting

and immunodetection were performed with anti-STAT3, anti-COX-2 and anti-ERK antibodies as described in the Methods

section. (B) Densitometric measurements were performed and represent the values for COX-2/ERK ratios. (C) Conditioned media

were isolated and gelatin zymography performed as described in the Methods section to assess the extent of proMMP-2

activation. A representative blot, out of 3 independent experiments, and corresponding densitometric analysis are shown.
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to inhibit MT1-MMP expression and function [44,45], and

showed promising anti-angiogenic efficacy when combined to

ionizing radiation [46,47]. Finally, MT1-MMP expression level

status was found to dictate the in vitro anti-inflammatory action

of lupeol on MMP-9 and COX-2 [48].

Recently, endoplasmic reticulum stress was found to contri-

bute to the activation of STAT3 and NF-kB [49,50]. Given that

MT1-MMP-mediated endoplasmic reticulum stress leads to COX-2

expression in human glioblastoma cells [51], and that COX-2 is

overexpressed in a majority of gliomas [52,53], targeting MT1-

MMP/STAT/COX-2 signaling in tumourigenesis may therefore be

considered an attractive therapeutic avenue. Paradoxically, the

effectiveness of direct COX-2 inhibitors on glioma cell proliferation

and radioresponse enhancement has been shown to be indepen-

dent from COX-2 protein expression [54]. This evidence suggests

that alternate initiator molecules, possibly involving cell surface

transducing mechanisms, are associated with therapy resistance

and involved in the regulation of COX-2 expression. Whether MT1-

MMP, or any cell surface carbohydrate structures, are directly

involved in such regulation remains to be confirmed. Nevertheless,

given that endoplasmic reticulum stress-induced autophagy

mechanisms still remain controversial [55], it becomes tempting

to suggest that targeting MT1-MMP pleiotropic intracellular trans-

ducing functions that, among other targets, lead to COX-2 expres-

sion may help design or optimize current therapeutic strategies.

Finally, studies have indicated the ability of stem cell popula-

tions, including MSC, to downregulate immune responses in vitro

and in vivo [56]. MSC have recently been reported to inhibit

naive and memory antigen-specific T cells [57]. The immuno-

suppressive qualities of MSC, which may facilitate evasion of

the immune system by a tumour, may in part involve major
histocompatibility complex (MHC) class I. Interestingly, pheno-

typic characterization of MSC by flow cytometry showed expres-

sion of MHC class I alloantigens, but failed to elicit T cell

proliferative responses due to active suppressive mechanisms

[58]. Recently, shedding of the tumour cell surface MHC class I

chain-related molecule A by MT1-MMP was demonstrated to

regulate sensitivity of tumour cells to NK cell killing, a process

which may add to tumour immune evasion and contribute to

tumour progression [59]. Such cell surface proteolytic activity of

MT1-MMP was also shown in MSC to contribute to cleavage of

CD44, another cell adhesion molecule expressed at the cell

surface of MSC, and to promote cell migration [60,61].

In conclusion, our study provides unexpected but original

evidence linking the signaling functions of MT1-MMP to the

JAK/STAT pathway. No evidence for neither PI3K nor p38/MAPK

crosstalk in ConA-mediated STAT3 phosphorylation could be

demonstrated in our hands, although some involvement of

MEK could be inferred but will require more investigation

(Fig. 1F). Given that the cooperativity between STAT3 and

NF-kB transcription factors regulates a highly overlapping reper-

toire of pro-survival, proliferative, and pro-angiogenic genes

associated with tumor progression [26], multi-targeted inhibi-

tory approaches should thus offer greater therapeutic efficacy.

Our data support a new molecular signaling axis balance

between STAT3 and NF-kB, through the intracellular domain-

mediated signaling of MT1-MMP and that may impact on COX-2

expression (Fig. 4). How the phosphorylated forms of STAT3 and

NF-kB interact in the nucleus has however yet to be elucidated.

Interestingly, STAT3 has been implicated in inhibiting IKK

activity in normal immune cells [62], and this piece of published

evidence strongly supports our present observations on how the



Fig. 4 – Schematic representation of MT1-MMP dual transcriptional regulation roles of lectin-induced inflammation.

Concanavalin-A treatment of MSC requires MT1-MMP cell surface functions that ultimately trigger activation of latent

proMMP-2 into active MMP-2 and lead to extracellular matrix (ECM) degradation. MT1-MMP is also thought to signal

intracellular JAK/STAT- and IKK/IjB/NF-jB-mediated transcriptional regulation of COX-2 gene expression leading to the

acquisition of an inflammatory phenotype. According to our current hypothesis, silencing of the JAK/STAT signaling axis

amplifies MT1-MMP’s ability to trigger COX-2 expression, therefore establishing the IKK/IjB/NF-jB signaling pathway as the

primary contributor to MT1-MMP-mediated inflammation while JAK/STAT signaling may serve as a secondary contributor and

exert some repressive regulation on IKK/IjB/NF-jB through yet unidentified mechanisms.
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relief of JAK/STAT repressive effects on IKK/IkB/NF-kB leads to

increased ConA-mediated COX-2 expression. Our study recon-

ciles the roles of STAT3 and NF-kB in mediating the complex

interactions between the tumor and its immune microenviron-

ment, and supports some aspects of the oncogenic and immu-

nomodulatory adaptive mechanisms that could eventually be

targeted in MSC’s contribution to hypoxic tumour development.
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