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Abstract

The established causal relationship between the chronic inflammatory microenvironment, tumor development and cancer recurrence has provided leads for
developing novel preventive strategies. Accumulating experimental, clinical and epidemiological data has provided support for the chemopreventive properties
of olive oil compounds traditionally found within the Mediterranean diet. In this study, we investigated whether tyrosol (Tyr), hydroxytyrosol, oleuropein and
oleic acid (OA), four compounds contained in extra virgin olive oil, can prevent tumor necrosis factor (TNF)-α-induced expression of cyclooxygenase (COX)-2
(an inflammation biomarker) in a human glioblastoma cell (U-87 MG) model. We found that Tyr and OA significantly inhibited TNF-α-induced COX-2 gene
and protein expression, as well as PGE2 secretion. Both compounds also inhibited TNF-α-induced JNK and ERK phosphorylation, whereas only Tyr inhibited TNF-
α-induced NF-κB phosphorylation. Paracrine-regulated migration of human brain microvascular endothelial cells (HBMECs) was assessed using growth factor-
enriched conditioned media (CM) isolated from U-87 MG cells. We found that while PGE2 triggered HBMEC migration, the CM isolated from U-87 MG cells,
where either COX-2 or NF-κB had been silenced or had been treated with Tyr or OA, exhibited decreased chemotactic properties. These observations demonstrate
that olive oil compounds inhibit the effect of the chronic inflammatory microenvironment on glioblastoma progression through TNF-α actions and may be useful
in cancer chemoprevention.
© 2015 Elsevier Inc. All rights reserved.
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1. Introduction

Glioblastoma multiforme (GBM) is the most common and
malignant type of astrocytoma (WHO Grade IV glioma) of the central
nervous system (CNS) [1]. Despite extensive research in the treatment
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of GBMs, the combination treatment of surgery, radiotherapy and
chemotherapy does not yet allow patients to live more than
approximately 15 months [2]. Indeed, GBMs are among the most
difficult cancers to treat due to their genetic heterogeneity, high
invasive growth and vascularization [3]. The invasive nature of GBMs
not only accounts for local tumor recurrence but is also responsible for
breakdown of the blood–brain barrier (BBB) and cerebral edema
formation causing serious symptoms in these patients [4].

Inflammation processes promote tumor development and con-
tribute to glioma recurrence [5]. Proinflammatorymediators therefore
play an essential role in the regulation of CNS disorders as well as in
modulating BBB functions [6]. There is a correlation between patients
with GBM and the presence of specific biomarkers in the serum that
could regulate angiogenesis and inflammation processes [7]. Tumor
necrosis factor alpha (TNF-α) is one of the proinflammatory cytokines
which have received particular attention over the past few years, in
part due to its ability to contribute to glioblastoma development [8].

Cyclooxygenase (COX)-2, one of the enzymes responsible for
causing inflammation, has been detected in a variety of human
malignant tumors [9] and has been shown to induce brain edema [10].
There are two isoforms, COX-1 and COX-2, which convert arachidonic
acid (AA) into several eicosanoids such as prostaglandin, thrombox-
anes and prostacyclin [11].Whereas COX-1 is constitutively expressed
in most tissues, COX-2 is an inducible enzyme, stimulated by growth
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factors, oncogenes, tumor promoters or inflammatory cytokines such
as interleukin (IL)-1β and TNF-α [12]. COX-2 plays a key role in the
release and activity of proangiogenic proteins, such as prostaglandin
E2 (PGE2), that directly stimulate endothelial cell migration and
angiogenesis [13] and has recently been associated with vascular
endothelial growth factor (VEGF)-independent angiogenesis [14].
Furthermore, COX-2 inhibition led to VEGF pathway blockade and
suppressed tumor vascularization and prevented metastasis. These
results demonstrate the importance of the COX-2/PGE2 pathway in
mediating autocrine/paracrine mechanisms, which support tumor
growth andwhichmay represent a potential target for the prevention/
treatment of cancer.

To overcome some of the therapeutic challenges in the treatment
of GBM patients, novel approaches are required to prolong survival.
Over the past few years, there has been a growing interest in
nutraceutical interventions, which have been investigated for
application toward different types of tumors, including brain tumors
[15,16]. This approach uses the antiinflammatory and chemopre-
ventive properties of naturally occurring agents, especially those
which originate from the vegetables, spices and fruits in our diet
[17,18]. Along these lines, accumulating experimental, clinical and
epidemiological data indicates the advantages to the traditional
Mediterranean diet which is characterized by high consumption of
foods from plant origin as well as relatively low consumption of red
meat [19]. The benefits of such a diet have been shown against
cardiovascular diseases, chronic degenerative diseases and some
types of cancers [20,21].

This diet is rich in olive oil, especially extra virgin olive oil (EVOO),
which exhibits antioxidant and antiinflammatory actions contributing
to the prevention of colorectal, prostate, lung, endometrial and breast
cancers [20–26]. The chemopreventive ability of EVOO is not only due
to fatty acids but also to its content of phenolic compounds such as
polyphenols and flavonoids [27]. In support of this, it has been
reported that oleuropein (OL), themost abundant phenolic compound
in olives [28], inhibits LN-18 glioblastoma cell migration [29].
Moreover, oleocanthal, an antiinflammatory compound which has a
chemical structure similar to ibuprofen [30], activates adenosine
monophosphate-activated protein kinase to down-regulate COX-2
expression in HT-29 colon cancer cells [31]. However, to our
knowledge, aside from a study by our own group [32], no one has
yet measured the activity of olive oil compounds against proinflam-
matory cytokines in glioblastoma cells. Considering the need for
chemoprevention intervention against glioblastoma progression,
fundamental studies are required to gain insight into the impact of
olive oil compounds on cancer-associated processes. Here, we
investigated the effects of three phenolic compounds (Hydroxytyr-
osol, HT; OL; Tyrosol, Tyr) and of a monounsaturated fatty acid (oleic
acid, OA) on TNF-α-induced COX-2 expression in glioblastoma cells.
Moreover, the effect of COX-2 inhibition within the tumor microen-
vironment on endothelial cell migration was also examined.

2. Materials and methods

2.1. Materials

Olive oil compounds HT, OL, Tyr (purity≥98%) andOA (purity≥99%)were purchased
from Extrasynthese (Lyon, France). Human recombinant TNF-α and PGE2 were
obtained from EMD Millipore Corporation (Billerica, MA, USA). AA was from Cayman
Chemical Company (Ann Arbor, MI, USA). Electrophoresis reagents were purchased
from Bio-Rad (Mississauga, ON, USA). The anti-ERK (extracellular signal-regulated
kinase 1 and 2) (K-23) polyclonal antibody was from Santa Cruz Biotechnologies (Santa
Cruz, CA, USA). The monoclonal antibody against glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) was from Advanced Immunochemical Inc. (Long Beach, CA,
USA). Antibodies for NF-κB p65, SAPK/JNK (c-Jun amino-terminal kinase), phospho-NF-
κB p65, phospho-SAPK/JNK polyclonal antibodies and phospho-ERK monoclonal
antibodies were from Cell Signaling Technology (Beverly, MA, USA). The anti-COX-2
monoclonal antibody was from BD Transduction Laboratories™ (Franklin Lakes, NJ,
USA). Antimouse and antirabbit horseradish peroxidase (HRP)-linked secondary
antibodies were purchased from Jackson ImmunoResearch Laboratories (West Grove,
PA, USA) and enhanced chemiluminescence (ECL) reagents were from Denville
Scientific Inc. (Metuchen, NJ, USA). Microbicinchoninic acid protein assay reagents
were from Thermo Scientific (Rockford, IL, USA). All other reagents were from Sigma–
Aldrich (Oakville, ON, USA).

2.2. Cell culture

Ahuman glioblastoma cell line (U-87MG)was purchased from theAmerican Tissue
Culture Collection (HTB-14™) and maintained in modified Eagle's Minimum Essential
Medium (Wisent, 320-036-CL) containing 10% calf serum (HyClone Laboratories,
SH30541.03), 1mM sodium pyruvate (Sigma–Aldrich, P2256), 2mM L-glutamine,
100units/ml penicillin and 100μg/ml streptomycin (Wisent, 450-202-EL). Human
brain microvascular endothelial cells (HBMECs) were from ScienCell™ Research
Laboratories (Carlsbad, CA, USA) and maintained in RPMI Medium (Wisent, 350-007-
CL) containing 10% fetal bovine serum (Life Technologies, 12483–020), Nu-serum™
(VWR, CACB355500), endothelial cell growth supplement (EMDMillipore Corporation,
02–102) and 1mM sodium pyruvate (Sigma–Aldrich, P2256). HBMEC used in this study
were restricted to use between passages 4 and 8. Cells were cultured at 37 °C under a
humidified 95%–5% (v/v) mixture of air and CO2. Cells were treated with vehicle (0.1%
ethanol) or with olive oil compounds and stimulated with TNF-α. All cellular assays
were performed at 85% confluence.

2.3. Western blot analysis

To study the effects of olive oil compounds on COX-2 protein expression, U-87 MG
cells were serum-starved in the presence of one of these molecules for 24 h, and then
the medium was replaced by fresh medium containing 25ng/ml TNF-α for 24 h. To
study the phosphorylation status of NF-κB p65, ERK and JNK, the cell medium
was replaced by fresh, serum-free medium for 30 min prior to cell stimulation with
25ng/ml TNF-α for 5 min. Cells were then washed once with ice-cold phosphate-
buffered saline (PBS) containing 1 mM each of NaF and Na3VO4 and followed by
incubation in the same buffer solution for 30 min at 4 °C. The cells were solubilized on
ice in lysis buffer [150mM NaCl, 10mM Tris–HCl, pH7.4, 1mM EDTA, 1mM
ethyleneglycol-O, O’-bis(2-aminoethyl)-N, N, N’, N’-tetraacetic acid (EGTA), 0.5%
(vol/vol) Nonidet P-40 and 1% (vol/vol) Triton X-100]. After electrophoresis, proteins
were transferred to polyvinylidene difluoridemembraneswhichwere then blocked 1 h
at 4 °C with 5% nonfat dry milk in Tris-buffered saline/Tween 20 (TBS-T; 147mM NaCl,
20mM Tris–HCl, pH 7.5 and 0.1% Tween 20). Membranes were further washed in TBS-T
and incubated overnight with an appropriate primary antibody in TBS-T containing 3%
bovine serum albumin and 0.01% sodium azide (NaN3), followed by a 1-h incubation
with an HRP-conjugated antimouse or antirabbit secondary antibody in TBS-T
containing 5% nonfat dry milk. Immunoreactive material was visualized with an
ECL detection system. The immunoreactive bands were quantified using ImageJ
software (NIH).

2.4. Total RNA isolation, cDNA synthesis and real-time quantitative PCR

Total RNA was extracted from U-87 MG monolayers using TRIzol reagent (Life
Technologies, Gaithersburg, MD, USA). For cDNA synthesis, 1 μg of total RNA was
reverse-transcribed into cDNA using a high capacity cDNA reverse transcription kit
(Applied Biosystems, Foster City, CA, USA). cDNAwas stored at -80 °C prior to PCR. Gene
expression was quantified by real-time quantitative PCR using iQ SYBR Green Supermix
(BIO-RAD, Hercules, CA, USA). DNA amplification was carried out using an Icycler iQ5
(BIO-RAD, Hercules, CA, USA), and product detection was performed by measuring the
binding of the fluorescent dye SYBR Green I to double-stranded DNA. The following
primer sets were provided by QIAGEN (Valencia, CA, USA): COX-2 (QT00040586), β-
Actin (QT01680476), GAPDH (QT00079247) and peptidylpropyl isomerase A (PPIA;
QT01866137). The relative quantities of target gene mRNA against an internal control,
β-Actin/GAPDH/PPIA RNA, were measured by following a ΔCt method employing an
amplification plot (fluorescence signal vs. cycle number). The difference (ΔCt) between
the mean values in the triplicate samples of target gene and those of β-Actin/GAPDH/
PPIA RNAwere calculated using the iQ5 Optical System Software version 2.0 (BIO-RAD,
Hercules, CA, USA), and the relative quantified value was expressed as 2-ΔCt.
Semiquantitative PCR was also performed to validate single amplification products
which were resolved on 1.8% agarose gels containing 1mg/ml ethidium bromide (not
shown).

2.5. Cytotoxicity assays

The sensitivity of U-87 MG cells to olive oil compounds was determined in vitro by
using the WST-1 assay (Roche Diagnostics, Montreal, QC, Canada). Briefly, after
cotreatment of cells with TNF-α and olive oil compounds for 24 h, U-87 MG cells were
exposed to 10 μL of the WST-1 tetrazolium salt reagent. The soluble formazan dye
produced by metabolically active cells was monitored for 60 min at 37 °C. The
absorbance at 450 nm was measured using a SpectraMax Plus reader (Molecular
Devices, Sunnyvale, CA, USA).
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2.6. Determination of PGE2 levels from cell supernatants

U-87 MG cells were exposed to either vehicle or olive oil compounds (100 μM) for
24 h before the addition of 25ng/ml TNF-α for 24 h. Cell culture media were subjected
to low-speed centrifugation to remove cell debris, and the amount of PGE2 protein
secreted by U-87 MG cells was determined using the PGE2 EIA Kit (Cayman Chemical
Company, Ann Arbor, MI, USA) in accordance with the supplier's instructions.
2.7. Transfection method and RNA interference

U-87 MG cells were transiently transfected with 20nM siRNA (Qiagen Sciences;
Germantown, MD, USA) against COX-2 (SI03038672), NF-κB p65 (SI01399622) or
scrambled sequences (AllStar Negative Control siRNA, 1027281) using the Lipofecta-
mine 2000 transfection reagent (Invitrogen, CA, USA). Cells were treated for 24 h in the
presence or absence of 25ng/ml TNF-α. Small interfering RNA and mismatch siRNA
were synthesized by QIAGEN and annealed to form duplexes.
Fig. 1. Chemical structures of olive oil compounds.
2.8. Cell migration assay by xCELLigence biosensor system

Experiments were carried out using the Real-Time Cell Analyser (RTCA) Dual-Plate
(DP) Instrument, the xCELLigence system (Roche Diagnostics, QC, Canada). This system
was used according to the instructions of the supplier. Firstly, U-87 MG cells were
serum-starved for 24 h. Then, cells (25,000 cells/well) were seeded in serum-free
medium onto a CIM-Plates 16 (Roche diagnostics). These plates are similar to
conventional Transwells (8μm pore size) with gold electrode arrays on the bottom
side of the membrane, which provide a real-time measurement of cell migration. Prior
to cell seeding, the underside of the wells from the upper chamber was coated with
25 μL of 0.15% gelatin in PBS and incubated for 1 h at 37 °C. The lower chamber was
filled with either growth factor-enriched conditioned media (CM) derived from U-87
MG cells treated or not with olive oil compounds (100 μM), TNF-α (25 ng/ml), or
siCOX-2 (20 nM), or with serum-free medium containing (or lacking) PGE2 (50 ng/ml)
or olive oil compounds. Prior to cell seeding, the underside of the wells from the
upper chamber was coated with 25 μL of 0.15% gelatin in PBS and incubated for 1 h
at 37 °C. The upper chamber of each well was filled with 100 μL of U-87 MG cells
(2.5×105 cells/ml). After 30 min of adhesion, cell migration was monitored every
5 min for 8 h. The impedance value was measured by the RTCA DP Instrument and
was expressed as an arbitrary unit called the Cell Indexwhich reflecting the amount of
migration-active cells. Each experiment was performed in duplicate wells.
2.9. Statistical analyses

Statistical analyses were assessed with Student's t test when one group was
compared with the control group. To compare two or more groups with the control
group, one-way analysis of variance with Dunnett's post hoc test was used. Differences
with Pb0.05 were considered significant. All statistical analyses and graphs were
performed using the GraphPad Prism software Version 5.0b (San Diego, CA, USA).
3. Results

3.1. Olive oil compounds inhibit TNF-α-induced COX-2 gene and protein
expression in human glioblastoma cells

IL-β-induced COX-2 expression in U-87 glioblastoma cells was
previously reported by us to be inhibited by the flavonoid luteolin,
which is found in olive oil [32]. The effects of other major olive oil
compounds (Fig. 1) on another cytokine which induces COX-2, that is,
TNF-α, were examined. U-87 MG cells were incubated for 24 h in
serum-free medium in the presence or absence of 100μM olive oil
compounds. The medium was then replaced with fresh serum-free
medium, and the cells were stimulated with 25 ng/ml of recombinant
TNF-α for 24 h. Under these conditions, TNF-α caused a marked
increase in COX-2 expression (Fig. 2A), whereas it was significantly
inhibited by 61.7% for OA and 36.5% for Tyr but not by HT or OL
(Fig. 2B). As shown in Fig. 2C–D, transcriptional inhibition of COX-2 by
the same compoundswas observed (65.0% inhibition for OA and 36.2%
inhibition for Tyr) and was not related to cell death (Fig. 2D). The half
maximal inhibition concentrations (IC50) of OA and Tyr on TNF-α-
induced COX-2 expression were 15.7 μM and 69.6 μM, respectively
(Fig. 2E–F).
3.2. OA and Tyr alter TNF-α-induced downstream signaling events in
human glioblastoma cells

To investigate themechanisms involved in the inhibitory actions of
OA and Tyr on TNF-α-induced COX-2 expression, we further
examined the effects of these compounds on TNF-α-induced NF-κB
and MAPK signaling pathways. Although ERK and JNK signaling
pathways have been reported to be activated by this proinflammatory
cytokine [33], little is known about their activation status in
glioblastoma cells, unlike TNF-α-induced NF-κB [34,35]. U-87 MG
cells were pretreated for 24 h with various concentrations of olive oil
compounds in serum-free medium. The medium was then replaced
with fresh serum-free medium lacking compounds, and the cells
were incubated for 30 min. After that, the cells were stimulated with
25 ng/ml of recombinant TNF-α for 5 min. Total protein expression
and phosphorylation status of downstream signaling intermediates
possibly targetedbyOAor Tyrwere assessedby immunoblotting using
specific antibodies. Exposure of U-87 MG cells to TNF-α markedly
induced phosphorylation of NF-κB, ERK and JNK, as determined by the
ratio of unphosphorylated to phosphorylated proteins (Fig. 3). Both
OA and Tyr compounds suppressed TNF-α-induced phosphorylation
of ERK (Fig. 3B) and JNK (Fig. 3C), whereas pNF-κB was unaffected by
OA (Fig. 3A). Treatment with these olive oil compounds resulted in a
concentration-dependent inhibition of the TNF-α-induced down-
stream signaling pathways. For OA and Tyr treatments, the IC50 values
obtained were 51.0 μM and 20.5 μM for pERK inhibition (Fig. 3B) and
11.5 μM and 81.3 μM for pJNK inhibition (Fig. 3C), respectively. The
phosphorylation of NF-κB was inhibited by Tyr treatment with an IC50
value of 15.2 μM (Fig. 3A; right panel). Overall, these results suggest
thatOA is efficient at inhibiting TNF-α-inducedCOX-2 expression via a
JNK-dependent pathway, whereas Tyr better targets the ERK and NF-
κB signaling in U-87 MG cells.



Fig. 2. Olive oil compounds inhibit TNF-α-inducedCOX-2 gene andprotein expression in humanglioblastoma cells. U-87MGcellswere serum-starved in the presence or absence of 100 μMof the
indicated olive oil compounds. Themediumwas then replacedwith fresh, serum-freemedium, and the cells were stimulatedwith 25 ng/ml of recombinant TNF-α for 24 h. (A) Cells were lysed,
and the levels of COX-2 protein expressionweremonitored by immunoblotting. Immunodetections obtained from representative experiments are shown. (B) The band intensitieswere analyzed
by scanning densitometry using ImageJ software, and the quantification of three independent experiments is shown. Values aremeans±S.E.M. (⁎Pb0.05 and ⁎⁎⁎Pb0.001 vs. TNF-α alone). For each
sample, the COX-2 level was normalized for GAPDH. (C) Total RNA was isolated from conditions described above; cDNA synthesis and qPCR were performed to assess COX-2 gene expression.
Values aremeans±S.E.M. of four independent experiments (⁎Pb0.05and ⁎⁎⁎Pb0.001vs. TNF-αalone). (D)Cell viabilitywasassessedbyWST-1assay, asdescribed in theMethods section.Values are
meansof two independent experiments performed in sextuplicate. (E)U-87MGcellswere serum-starved in thepresenceor absenceof various concentrationsof the indicatedoliveoil compounds
for 24 h, and then the medium was replaced by fresh medium containing 25ng/ml TNF-α for 24 h. Immunodetections obtained from representative experiments are shown. (F) The band
intensities obtained for each olive oil treatment were analyzed and corrected for GAPDH. The quantification of four independent experiments is shown. The relative levels of COX-2 protein
expression were also normalized to those seen in TNF-α control (value=100). Values are means±S.E.M. (⁎Pb0.05, ⁎⁎Pb0.01 and ⁎⁎⁎Pb0.001 vs. TNF-α alone).
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3.3. OA and Tyr inhibit TNF-α-induced PGE2 secretion by human
glioblastoma cells

We next investigated whether TNF-α increased PGE2 release by
U-87 MG cells. As shown in Fig. 4, TNF-α triggered higher release of
PGE2 in the medium (28-fold increase) compared to untreated U-87
MG cells, and this result was comparable to that obtained with AA
(31-fold increase), known to produce PGE2 by COX-2 [36]. OA and Tyr
at 100 μM significantly reduced TNF-α-induced PGE2 levels in cell
culture media by 45.4% and 71.5%, respectively.
Fig. 3. OA and Tyr alter TNF-α-induced downstream signaling events in human glioblastoma ce
indicated olive oil compounds for 24 h. The medium was then replaced by fresh serum-free m
treatments, the phosphorylated forms of (A) NF-κB, (B) ERK or (C) JNK, along with their total
representative experiments are shown (top panels). The band intensities were analyzed by de
phosphorylated protein to those of the total protein to correct for variation in the amount of pro
to those seen in TNF-α control (value=100). Values are means±S.E.M. of three independent
3.4. Gene silencing of COX-2 or of NF-κB p65 abrogates the
TNF-α-mediated paracrine regulation of HBMECs migration

The actions of PGE2 on tumor-associated angiogenesis are thought
to involve endothelial cell migration, proliferation and tube formation
[13,37,38]. Since PGE2 is produced in large quantities by COX-2-
overexpressing tumors [39], we analyzed the role of COX-2-mediated
paracrine regulation ofmicrovascular endothelial cell migration. Gene
silencingwas performed in U-87MG cells, and the specificity of COX-2
knockdown was confirmed (Fig. 5A–B, left panel). Moreover, COX-2
lls. U-87 MG cells were serum-starved in the presence of various concentrations of the
edium for 30 min prior to cell stimulation with 25ng/ml TNF-α for 5 min. After these
protein levels, were monitored by immunoblotting. Immunodetections obtained from
nsitometry using ImageJ software and expressed in arbitrary units as a ratio of levels of
tein (bottom panel). The relative levels of phosphorylated protein were also normalized
experiments (⁎Pb0.05, ⁎⁎Pb0.01 and ⁎⁎⁎Pb0.001 vs. TNF-α alone).

image of Fig.�3


Fig. 3. (continued).
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silencing also prevented TNF-α from affecting the COX-2/PGE2
signaling axis involved in HBMEC migration. In evidence of this, the
CM harvested from U-87 MG cells where COX-2 expression was
silenced was able to prevent TNF-α-mediated HBMEC migration
(Fig. 5C, left panel) suggesting that the secretion of PGE2 was
abrogated. Interestingly, the TNF-α-induced migration of HBMECs
was also inhibited beyond the control level upon COX-2 silencing.
Since VEGF is up-regulated by TNF-α [8] and that COX-2 is directly
involved with VEGF production [40], COX-2 silencing, as used in our
assay, may inhibit HBMEC migration through both the suppression of
TNF-α-induced COX-2 expression and VEGF secretion in U-87
MG cells.

It was reported that the activation of NF-κB in tumor cells
contributed to the expression of several proangiogenic genes essential
for endothelial cell migration [41]. Therefore we analyzed the role of
NF-κB-mediated paracrine regulation of HBMECs. The specificity of
NF-κB p65 knockdown in U-87 MG cells was first confirmed (Fig. 5A–
B, right panel). The CM harvested from U-87 MG cells where NF-κB
p65 expression was silenced prevented TNF-α-mediated HBMEC
migration (Fig. 5C, right panel). The fact that siNF-κB p65 down-
regulated COX-2 protein expression in U-87 MG cells (Fig. 5A, right
panel) confirms the involvement of the NF-κB pathway in the up-
regulation of the COX-2/PGE2 system by TNF-α, which is important in
the paracrine regulation of HBMEC migration.
3.5. OA and Tyr inhibit HBMEC migration

Since the vascular microenvironment is important in promoting
glioblastoma growth, we analyzed the paracrine effect of CM derived
from U-87 MG cells on HBMEC migration when treated with the two
most potent olive oil compounds inhibitors, OA and Tyr, in the
presence of TNF-α. As shown in Fig. 6A–B, the HBMEC migration
induced by the CM from U-87 MG cells treated with TNF-α was
inhibited in a concentration- and time-dependent manner by OA and
Tyr with IC50 values being observed at concentrations of 60.4 μM for
OA (Fig. 6A) and 70.3 μM for Tyr (Fig. 6B).
After having demonstrated that OA and Tyr inhibited both TNF-α-
induced COX-2 expression and PGE2 secretion fromU-87MG cells, we
next addressed whether OA or Tyr inhibit HBMEC migration by
directly targeting the chemotactic activity of PGE2. We measured cell
migration after incubation of HBMECs with 50 ng/ml of recombinant
PGE2 in the presence or absence of 100 μMof olive oil compounds.We
found that PGE2 stimulated HBMEC migration as compared to control
cells and that increase was completely abolished by Tyr, whereas OA
hadno inhibitory effect (Fig. 6C). These results indicate that these olive
oil compounds blocked endothelial cell migration through different
cellular mechanisms.
4. Discussion

The incidence of brain cancer has markedly increased during the
last few decades. GBMs present several challenges related to cancer
cell proliferation and resistance to antiangiogenic, antimetastatic and
antiinflammatory therapies [3]. A high level of COX-2 expression has
been detected in gliomas, and its expression has been correlated with
the histopathological grade [9]. Recent studies have shown that many
COX-2 inhibitors, such as nonsteroidal antiinflammatory drugs, could
act as efficient agents for cancer prevention as well as for intervention
alone or in combination with current chemotherapy and radiation
modalities [42,43].

TNF-α has been reported to be up-regulated following radiation
therapy in GBM patients [44] and that dietary antioxidants can reduce
the incidence of brain tumors by down-regulating TNF-α or by
scavenging free radicals [45]. Here, we demonstrate for the first time
that two specific olive oil compounds, Tyr and OA, inhibited TNF-α-
inducedCOX-2 expression inU-87MGcells andPGE2 released through
different signaling pathways. Although both compounds inhibited
TNF-α-induced phosphorylation ofMAPK, Tyr preferentially inhibited
the phosphorylation of ERK as opposed to OA which reduced JNK
phosphorylation. Moreover, the TNF-α-induced phosphorylation of
NF-κB is inhibited by Tyr, but not by OA. Consequently, the observed
inhibition of PGE2 secretion was more affected by Tyr.

image of Fig.�3


Fig. 4. OA and Tyr inhibit TNF-α-induced PGE2 secretion by human glioblastoma cells.
U-87 MG cells were serum-starved in the presence or absence of 100 μM of the
indicated olive oil compounds before the addition of 25ng/ml TNF-α for 24 h. Cell
culture media were collected, and the levels of PGE2 were measured by enzyme
immunoassay. Values aremeans±S.E.M. of two independent experiments performed in
triplicate (⁎⁎Pb0.01 and ⁎⁎⁎Pb0.001 vs. TNF-α alone).
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It was reported that the transforming growth factor-β-induced
activation of ERK triggered the release of PGE2 in osteoblastic cells
which, in turn,mediated cell proliferation [46]. Although speculative,
such a mechanism could be similarly involved with TNF-α in U-87
MG cells. The phosphorylation of ERK could either be directly
activated by TNF-α or indirectly through an autocrine growth factor-
mediated process involving TNF-α. Consequently, activated ERK
could up-regulate COX-2 expression [47] as well as PGE2 synthesis
and secretion [46]. The findings that TNF-α-induced COX-2 expres-
sion was more affected by OA than TNF-α-induced ERK activation
and PGE2 secretion in U-87 MG cells, and that the angiogenic action
of PGE2 on HBMEC migration remained unaltered, support the
separate involvements of these two crucial mechanisms in the
regulation of TNF-α-mediated inflammation.

The molecular regulation of COX-2 gene expression is tightly
regulated at both the transcriptional and posttranscriptional levels in
physiological conditions or dysregulated in pathophysiological con-
ditions such as cancer [31]. To our knowledge, the effect of olive oil
compounds on the transcription of COX-2 mRNA or its stability still
remains poorly understood. However, it has been reported that JNK
pathway is involved in the up-regulation of COX-2 expression by LPS
(bacterial lipopolysaccharide) possibly through enhanced COX-2
mRNA decay in activated murine J774 macrophages [48]. Since both
Tyr and OA suppressed TNF-α-induced phosphorylation of JNK in our
study, it is tempting to speculate that such a mechanism could also be
involved in the inhibitory effect of these compounds. Among the
nuclear factors shown to stabilize and increase the expression of COX-
2 mRNA, HuR has been reported to regulate COX-2 stability [49]. The
binding of HuRwithin the 3’-untranslated region of COX-2 seems to be
critical for its posttranscriptional mRNA stabilization. It has been
reported that triptolide, a natural compound isolated from Triptery-
gium wilfordii Hook.f, reduced TNF-α-induced COX-2 expression in
human non-small cell lung cancer, and the mechanism of action was
related to an HuR-mediated decrease of mRNA stability [50]. In
support, we previously reported that the green tea polyphenol EGCG
decreased the mRNA stabilizing factor HuR expression in HL-60
myeloid leukemia cells [51]. However, Tyr and OA did not inhibit HuR
mRNA expression in the presence of TNF-α in U-87 MG cells
suggesting that these compounds did not exert their inhibitory effect
on COX-2mRNA expression via HuR (data not shown). However, olive
oil compounds could suppress other stabilizing factors such as
tristetraproline [52] or CUG-BP2 [53] or COX-2 gene transcription.
GBMs are among the most invasive and vascularized tumors.
Interaction of GBM cells with their tumor microenvironment is
necessary for their growth, which is limited by the emergence of
new blood vessels via angiogenesis [54]. Angiogenesis and inflamma-
tion are closely linked [55], and it was reported that TNF-α induces
expression of VEGF in gliomas, leading to increased brain tumor
angiogenesis [8]. In the present study, in order to recapitulate some
features of the GBM microenvironment in vitro, growth factor-
enriched media from U-87 MG cells were generated, and their
paracrine effects on the migration of HBMECs were analyzed. We
first demonstrated that HBMEC migration was attenuated with CM
isolated from U-87 MG cells with COX-2 or NF-κB p65 silenced genes,
supporting a role for COX-2 in paracrine-regulated angiogenesis.
Second, the CM fromU-87MGcells stimulatedwith TNF-α and treated
with OA or Tyr altered endothelial cell migration. Interestingly, it was
reported that PGE2 could synergize with TNF-α to promote the
transcriptional activity of NF-κB p65 in tumor cells [56] which, in turn,
regulates the expression of genes involved in endothelial cell
migration [41]. Thus, the observed inhibition of PGE2-induced
endothelial cell migration by Tyr correlates well with the inhibitory
effects of this compound on the activation of key pathways mediating
PGE2 release from U-87MG cells, such as NF-κB p65 and ERK, and, to a
much lesser extent, COX-2.

It has recently been reported that two olive oil polyphenols, HT and
OL, inhibited inflammatory angiogenesis through the suppression of
ROS-mediatedNF-κBp65-dependent COX-2 andMMP-9expression in
human vascular endothelial cells [57]. In fact, these compounds
inhibited the phorbolmyristate acetate (PMA)-induced COX-2 protein
expression and prostanoid production as well as MMP-9 protein
release and gelatinolytic activity. It has also been reported that HT
inhibited PMA-induced MMP-9 and COX-2 activity and expression in
activated human monocytes via NF-κB and protein kinase C (PKC)α
and PKCβ1 suppression [41]. Since it has been reported that TNF-α did
not induce significant secretion ofMMP-9 in both the cell lines used in
our study, U-87 MG cells and HBMECs [30,56], this then indicates that
the modulation of MMP-9 is not implicated.

We previously reported that OA but not Tyr inhibited VEGFR-2
phosphorylation and its downstreampathway, leading to the inhibition
of VEGF-induced human umbilical vein endothelial cell proliferation
and migration [58]. Since OA exerted no inhibitory effect on PGE2-
induced HBMECmigration, it is possible that the inhibition observed by
the CM fromU-87MG cells stimulatedwith TNF-α and treatedwith OA
is attributable not only to COX-2 expression inhibition but also to
alternate angiogenic factors secreted in the medium such as VEGF.

Given the pleiotropicmodes of action of OA and Tyr, a combination
of these compounds could be beneficial for preventing tumor
progression. EVOO provides a considerable amount of OA, but it is
rarely available as a free fatty acid in vivo and is found as a basic
structural component in triglycerides, phospholipids and cholesterol
esters [59]. Thus, the majority of the studies on olive oil compound
bioavailability have only focused on the potential healthful effects of
phenolic compounds. These studies have shown a concentration-
dependent absorption of olive oil phenols in humans [60]. The
apparent absorption of these compounds was at least 55–66% of the
ingested olive oil, which was metabolized and distributed throughout
the body, even across the BBB, and was reexcreted as HT and Tyr in
urine [61,62]. Depending on the type of olive cultivars and on
nutritional custom, the concentration of phenols in EVOO could vary
from 50 to 800 mg/kg [63]. Moreover, the plasma concentration of
phenolic compounds after olive oil consumption in humans has been
reported to be in the range of 0.1–59 μM [64,65]. It is thus tempting to
speculate that the concentrations required for inhibitory effects, as
observed in the current study, are behaviorally achievable in humans.

While most studies focus on one compartment independently of
the other, our study provides evidence for a molecular and cellular
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Fig. 5. Gene silencing of COX-2 or NF-κB p65 abrogates TNF-α-mediated paracrine regulation of HBMECmigration. (A–B) U-87MG cells were transiently transfected with siRNA against
COX-2 (siCOX-2) or NF-κB p65 (si NF-κB p65) orwith a scrambled sequence (siScr) as described in theMethods section. (A) RepresentativeWestern blots are shown for the expression
of COX-2 and NF-κB p65, with GAPDH used as a loading control. (B) Total RNA was extracted, and qRT-PCR was used to assess COX-2 (left panel) and NF-κB p65 (right panel) gene
expression in the siScr, siCOX-2 and siNF-κB p65-transfected cells upon treatment with 25ng/ml TNF-α for 24 h. Values are means±S.E.M. of two independent experiments (⁎⁎Pb0.01
and ⁎⁎⁎Pb0.001 vs. TNF-α alone). (C) HBMECswere starved for 24 h before adhesion onto a CIM-Plates coated with 0.15% gelatin. Then cells were incubatedwith CM derived fromU-87
MG cells treated (or not)with TNF-α (25 ng/ml) or siCOX-2 (20 nM) (left panel) or siNF-κB p65 (20 nM) (right panel) as described in theMethods section. The rate of cellmigrationwas
monitored in real-time using the xCELLigence system. Representative examples from two experiments measuring impedance responses are shown for each condition. The normalized
Cell Index at the base time is set to 1 in all wells.
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interplay between the brain tumor and the brain endothelial
compartments. Overall, our data therefore suggest that the chronic
inflammatorymicroenvironment, which drives glioblastoma growth
and which contributes to their neovascularization and invasive
characteristics, may be efficiently prevented through the consump-
tion of EVOO. Given that cancer development and progression is a
multistep process, supplementation with olive oil may represent an
efficient dietary intervention in the prevention and/or management
of glioblastoma.
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Fig. 6. OA and Tyr inhibit HBMEC migration. HBMECmigration was induced with either
CM fromU-87MG cells treated or notwith TNF-α (25 ng/ml), various concentrations of
(A)OAor (B) Tyr, or (C)with serum-freemediumcontaining (or lacking)PGE2 (50 ng/ml)
or olive oil compounds (100 μM) as described in the Methods section. The rate of cell
migration was monitored in real-time using the xCELLigence system. Representative
examples from two experiments measuring impedance responses are shown for each
condition. ThenormalizedCell Index at thebase time is set to 1 in allwells. For (A) and (B),
the negative controls were represented by green line (CM fromU-87MG cells) and black
line (serum-free media for U-87 MG cells culture).
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